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1 Shredding: Union Materialization Case

Figure 1 shows the materialization algorithms extended to handle the case of a
union of bag expressions.

The REPLACESYMBOLICDICTS function first recursively inlines all let bind-
ings in the given expression and then performs the following actions: 1) re-
places any Lookup over an input symbolic dictionary with a MatLookup over
the corresponding materialized dictionary obtained using the resolver function;
2) B-reduces any Lookup over an intermediate symbolic dictionary (lambda),
returning its body expression with the given label inlined; and 3) replaces any
Lookup over a DictTreeUnion with a union of two recursively resolved lookups.

2 Partial Shredding

Shredding can easily be tuned towards either partially-shredded inputs or partially-
shredded outputs.

Example 1 The shredded output in Example 4 in the body of the paper was
produced by three queries, the first producing the top-level bag, the second
producing the dictionary for corders, and the third producing a dictionary for
corders oparts. If there is little or no data skew in oparts, we could decide not
to shred corders. The query producing the top-level bag would be unchanged,
but we modify the dictionary for corders so that it maps each label to an entire
nested object.

let copP := COP? in
(corders™® := . match [ = NewLabel(cop®) then
for co’ in Lookup(cop®.corders, cop”.corders) union

{{odate := cof .odate, oparts := sumBY;ﬁ;:aui(

for op in cof.oparts union
for pf in Partf union
if pf.pid == op.pid then
{(pname := pF.pname,
total := op.qty * pF.price)}

corders®d = {() }) O
The modification over the fully-shredded version is to replace a call to the
NewLabel function at oparts with the inlining of the oparts subquery. O



MATERIALIZE (expression eF | expression e, variable Top, function resolver)
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el = REPLACESYMBOLICDICTS(e¥, resolver)  // by materialized dicts
EMIT(Top < )

el = NorMmALIZE(eP) // recursively inline let bindings
MATERIALIZEDICT (e}, Tap, resolver)
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MATERIALIZEDICT (expression eP, variable PARENT;ndez, function resolver)
switch eP:
case (a1 :=e€1,...,a, = €p) =
foreach a™ € {a1,...,an}

EMIT (LABDOMAINinder_a <=
dedup(for = in PARENTnde; union { (label := wz.a)}))
fun = REPLACESYMBOLICDICTS(eP.a™, resolver)
EMIT (MATDICTindesa <=
for [ in LABDOMAIN;ndez_o Union
{ (1abel := l.1abel, value := fun(l.label))})

D ™ MATDICTindes.a)

resolver = ADDMAPPING (resolver, e
MATERIALIZEDICT (get (eP.a®™?), MATDIC T indes_a, Tesolver)
case DictTreeUnion(el,e?) =
MATERIALIZEDICT (e}, PARENT s, Tes0lver)

MATERIALIZEDICT (e5 , PARENT e, Tesolver)

Figure 1: Materialization algorithms.



Plan Operator ‘ Definition for Dataset API

Tp(a)(X) ‘ X.filter(x => p(x))

Tay,.an(X) ‘ X.select(ay, ..., ay)

// R does not contain z.a;
pui(X) X.flatMap(x => x.a; .map(y =>
R(x.ai, ..., X.ax, y.by, ..., y.b;))).as[R]

// R does mot contain z.a;
X.withColumn(index, monotonically_increasing_id()).flatMap(x =>
if (x.a;.isEmpty)

2 (X) R(x.index, x.a;, ..., X.ax, None, ..., None)
else x.a;.map(y =>
R(x.index, x.aj, ..., X.ax, Some(y.b1), ...,
Some (y.bj)))) .as[R]
X Dp(a)—g(y) Y ‘ X.join(Y, f === g)
X > (p)=g(y) ¥ ‘ X.join(Y, f === g, "left_outer")
patue(z) (X) X.groupByKey(x => key(x)).agg(typed.sum(x =>
+, key(z) value(x) match { case Some(v) => v; case _ => 0 }))

X.groupByKey (x => key(x)) .mapGroups{ case (key, values) =>
val grp = values.flatMap{ case x =>

value(z) value(x) match { case Some(t) => Seq(t); case _ => Seq()
o, key(z) (X) }}.toSeq
(key, grp)
}

Figure 2: Plan language operators and their semantics for Spark Datasets.

3 Spark Implementation of the Plan Operators

Figure 2 details the Spark implementations of the plan operators (Section 2.2)
applied during code generation (Section 4.2). All operations use Dataset[R],
where R is an arbitrary case class. For 1. (X), we use index to create a unique
index associated to the top-level input of the unnest operator.

As mentioned in Section 4.2 of the body of the paper, Spark Datasets are a
special instance of RDD that use encoders to avoid the large memory footprint
of using RDDs of case classes. Though similar in their underlying data type,
the Dataset and RDD APIs are different and thus will have different implemen-
tations for the language operators. Figure 3 provides the implementation of the
operators of the plan language using Spark RDDs. In the next section, we will
highlight the advantages of using Spark Datasets as the underlying type in the
code generator.



Plan Operator ‘ Definition for RDD API

Op(z)(X) ‘ X.filter(x => p(x))

Ta,..an(X) ‘ X.map(x => R(x.ay, ..., X.ay))

// x.drop(a) ezcludes attribute a from tuple x

a;
pe(X) X.flatMap(x => x.a.map(y => (x.drop(a), y)))
// x.dropAddIndex(a) ezcludes attribute a from tuple x,
20 (X) // and adds a unique index for every z-tuple

X.flatMap(x => if (x.a.isEmpty) Vector((x, null))
else x.a.map(y => (x.dropAddIndex(a), y)))

val keyX = X.map(x => (£(x), x))
X Dy (2)=g(y) Y | val keyY = Y.map(y => (£(y), y))
keyX. join(keyY) .values

val keyX = X.map(x => (£(x), x))
XNJ-(I):g(y) Y | val keyY = Y.map(y => (£(y), y))
keyX.leftOuterJoin(keyY) .values

X.map(x => if (value(x) !'= null) (key(x), value(x))

value(z)
r (&) else (key(x), 0)).reduceByKey(_+_)

+, key(z)

X.map(x => if (value(x) !'= null) (key(x), Vector(value(x)))

value(x)
I (X) else (key(x), Vector())).reduceByKey(_++_)

W, key(x)

Figure 3: Plan language operators and their semantics for Spark RDDs.

4 Detailed Description of Nested TPC-H Bench-
mark

We detail the nested TPC-H benchmark introduced in our experimental eval-
uation (Section 7). The queries are designed for a systematic exploration of
nested queries within a distributed environment, focusing on a small number
of top-level tuples and large inner collections. The queries range from 0 to 4
levels of nesting, organized such that the number of top-level tuples decrease
as the level of nesting increases. All queries start with the Lineitem table at
level 0, then group across Orders, Customer, Nation, then Region, as the level
increases. Each query has a wide variant where we keep all the attributes, and
a narrow variant which follows the grouping with a projection at each level.

For each of the query categories below, we provided the input NRC, the
optimal plan produced from the standard pipeline (STD) and the shredded
pipeline (SHRED). Where relevant, we describe the plan for unshredding and
discuss optimizations introduced by the code generator.



4.1 Flat-to-nested

Here we detail the flat-to-nested queries of the benchmark, which build up
nested objects from flat input. For scale factor 100, this organization gives
query results with 600 million, 150 million, 15 million, 25, and 5 top-level tu-
ples. Flat-to-nested queries perform the iterative grouping above to the rela-
tional inputs, returning a nested output. This starts with the Lineitem table (0
levels), Lineitem grouped by Orders (oparts), oparts grouped by Customers
(corders), corders grouped by Nation (ncusts), ncusts grouped by Region
(rnations). At the lowest level we keep the partkey and quantity of a Lineitem.
At the higher levels the thin variant keeps only a single attribute, e.g. orderdate
for Orders, customername for Customer, etc.

The ellipses represent the additional fields that may be present based on
narrow and wide versions. We provide the query with 4 levels, since queries
with different levels are merely subsets of this query.

4.1.1 Input NRC

NRC Program.
for r in Region union
{(rname := r.rname, ..., rnations :=
for n in Nation union
if r.rid == n.rid then
{(nname := n.nname, ..., ncusts:=
for ¢ in Customer union
if n.nid == c.nid then
{(cname := c.cname, ..., corders :=
for o in Order union
if c.cid == 0.cid then
{(odate := o.0date, ..., oparts:=
for [ in Lineitem union
if o0.0id ==l.0id then

{(pid:=1lpid, ..., qty:=1lqty)})})})})}



4.1.2 Plan produced by the standard pipeline

7rrname,.4.,rnations

Prid
. &Jrid
Region r nname, ..., ncusts
Xhid
. iy nid
Nation r cname, ..., corders
i
H.Jcid
Customer r odate, ..., oparts
Poid
H_Joid
Order F qty, price
Lineitem

The sequential join-nest operations in the above plan will be merged into
cogroups during code generation (Section 4.2). We implement the cogroup in
a left-outer fashion, persisting empty bags from the right relation for every
matching tuple in the left relation. As an example, consider the join and nest
over Order and Lineitem in the above.

Orders.groupByKey(o => o0.0id)
.cogroup(Lineitem.groupByKey (1 => 1.0id)) (
case (key, orders, lineitems) =>
val oparts =
lineitems.map(l => (1.pid, 1.lqty)).toSeq
orders.map(o => (o.odate, oparts)))

4.1.3 Plan produced by the shredded pipeline

The below is the plan produced by the shredded pipeline for the evaluation
of the shredded query prior to unshredding (reconstructing the nested object).
The plan produced by the shredded pipeline for unshredding is identical to the
plan produced by the standard pipeline, with each input relation represented as
a top-level bag.

7Trname, ..., rnations:=rid (Region)

RNCOPr,, :=
. L 7Tlabel::rid,nname,‘..,ncusts::nid(Natj-on)
rnationspjct :=
L 7Tlabel::nid,cna.me,...,corders::cid(Cus’tomer)
ncustspiet 1=



T'label:=cid,odate,...,oparts:=oid (Order)
corderspijct :=

__ Tlabel:=oid,pid,qty(Lineitem)
opartsp;.; ‘=

4.2 Nested-to-nested

The nested-to-nested queries take the materialized result of the flat-to-nested
queries as input and perform a join with Part at the lowest level, followed by
sumBygflgeprice, as in Example 1. The nested-to-nested queries thus produce
the same hierarchy as the flat-to-nested queries. The levels continue reflecting
the same hierarchy and number of top-level tuples as the flat-to-nested queries.
These are queries that operate on nested input. The ellipses represent the
additional fields that may be present in the narrow and wide version of the
queries. We provide the query for 4 levels of nesting, all other queries can be
derived from this query.

4.2.1 Input NRC

for r in RNCOP union

{(rname := r.rname, ..., rnations:=
for n in r.rnations union
{(nname := n.nname, ..., ncusts:=
for ¢ in n.ncusts union
{(cname := c.cname, ..., corders :=
for o in c.corders union
{(odate := 0.0date, ..., oparts:=
sumBy 252

for | in o.oparts union
for p in Part union
if [.pid == p.pid then
{(pname := p.pname,
total :=l.qty x p.price)}))})} )} }



4.2.2 Plan produced by the standard pipeline

Trname,...,rnations

F&J nname,...,ncusts
rncopID,rname,...

F&J cname,...,corders
rncopID,ncopID,rname,nname,...

F&J odate,...,oparts
rncopID,ncopID,copID,rname,nname,cname,...

F&J pname,total
rncopID,ncopID,copID,coID,rname,nname,cname,odate,...

F+ qty*price
rncopID,ncopID,copID,colD,rname,nname,cname,odate,pname,...

Pbid
VRN
ﬂoparts Part
|
ﬂcorders
ﬂncusts
#rnations
\
RNCOP

4.2.3 Plan produced by the shredded pipeline

Trname,...,rnations:=rid (RNCDPTop)

RNCOP7,,, :=
. L 7Tlabel::rid,nname,...,ncus‘cs::nid(rna-tj-on-sDict)
rnationspi;qt :=
L 71—1.:-1bel::nid,cname,.‘‘,corders::cicl(n-CU'StSDict)
ncustspiet 1=
7Tlabel::cid,odaxte,‘..,oparts::oid(cordersDiciﬁ)
corderspict 1=
opartsp; ; =



BagToDict

71'label::oid,pname,total

FJr/oid,pna.me/qty*price

>Xpid
Tpid,... ~ Tpname,qty

opartsp,;., Part

4.3 Nested-to-flat

The nested-to-flat queries follow the same construction as the nested-to-nested
queries, but apply sumBy%*Price at top-level, where name is one of the top-
level attributes; this returns a flat collection persisting only attributes from the
outermost level.

The ellipses represent the additional fields that may be present in the narrow
and wide version of the queries. We provide the query for 4 levels of nesting,
all other queries can be derived from this query.

4.3.1 Input NRC

SumBytotal (

rname,...
for r in RNCOP union
for n in m.rnations union
for ¢ in n.ncusts union
for o in c.corders union
for | in o.oparts union
for p in Part union
if l.pid == p.pid then
{(rname := r.rname, ...
total :=[l.qty * p.price)})
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4.3.2 Plan produced by the standard pipeline

1—\+ qty*xprice

rname,...,pname

|
Npid
7N
7J/oparts Part
|
#jlcorders
|
ncusts
|
#rnations
|
RNCOP
Plan produced by the shredded pipeline.
F+ total

rname,...

Xrnations=rlabel

/

Trname,rnations,...

| "

T

PXncusts=nlabel

T~

RNCOPTop Trlabel,... PXlcorders=clabel
rnations Dict Tlnlabel,corders

ncustspiet
7Tclabel,oparts

corderspiqt

7-‘-olabel,pid,q‘ty, o

oparts ;.

11

Noparts:olabel

F+ qty*price
olabel,pname,...

D<]pid

e

7Tpname,price

Part



5 Biomedical Query Benchmark

This section contains details of the biomedical benchmark that was developed
in collaboration with a precision medicine start-up. It includes both more de-
tail on the end-to-end example in the body of the paper, as well as additional
exploratory queries.

The biomedical benchmark is a collection of NRC queries that perform mul-
tiomic analyses, including an end-to-end pipeline E2E that is based on an anal-
ysis that uses several genomic datasets to identify driver genes in cancer[21].
Given that cancer progression is determined by the accumulation of mutations
and other genomic aberrations within a sample [4], this analysis integrates so-
matic mutations, copy number information, protein-protein interactions and
gene expression data. The benchmark also includes three queries reflecting
web-based exploratory analysis that occurs through clinical user interfaces [12].
This section continues with details on these datasets and then describes the
queries of the analysis and additional queries.

5.1 Inputs

This section explains the inputs used within the biomedical benchmark. The
majority of the datasets are provided from the Genomic Data Commons (GDC)
[10], which houses public datasets associated with the International Cancer
Genome Consortium (ICGC). The types described below are often truncated
for simplicity. The inputs include a two-level nested relation BNy (280GB)
[13, 14], a one-level nested relation BNy (4GB) [19], and five relational inputs -
the most notable of which are BF; (23G), BF3 (34GB), and BF3 (5KB) [13, 8].
Full details of these queries can be found in the code repository [7].

5.1.1 BNsy: Occurrences

An occurrence is a single, somatic mutation belonging to a single sample that
has been annotated with candidate gene information. Somatic mutations are
cancer-specific mutations that are identified within each sample, and are iden-
tified by comparing a sample’s cancerous genome to a non-cancerous, reference
genome. Note that the term mutation is often used interchangeably with vari-
ant. Candidate genes are assigned to mutations based on proximity of a given
mutation to a gene on the reference genome. In a naive assignment, a reference
gene is a candidate if the mutation lies directly upstream, downstream, or on a
gene; however, mutations have been shown to form long-range functional con-
nections with genes [18] and as such candidacy can best be assigned based on
a larger flanking region of the genome. With this in mind, the same gene could
be considered a candidate gene for multiple mutations within a sample.
Variant annotation is the process that assigns candidate genes to every mu-
tation within each sample. A popular annotation tool is the Variant Effect
Predictor (VEP) [14]. The Occurrences input is created by associating each
simple somatic mutation file (MAF) with nested annotation information from
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VEP; this returns annotations in JSON format with mutation information at the
top-level, a collection of candidate genes for that mutation and corresponding
consequence information on the first level, and a collection of additional con-
sequence information on the second level. Each of the mutations within each
sample will contain the corresponding nested annotation information.

The tuples in the candidates collection contain attributes that correspond
to the impact a mutation has on a gene. Attribute impact is a value from 0 to
1 denoting any known detrimental consequence a mutation has to a candidate
gene. sift and poly are additional impact scores that rely on prediction soft-
ware [20, 1]. Given that genes code for proteins and proteins have functional
consequences that are attributed disease, these scores reflect the predicted role
a mutation has in functional changes to proteins based on alterations to a gene
sequence. The consequences for each candidate gene contain qualitative de-
scriptions of mutation impact to a gene sequence based on a standardized set
of categorical descriptions from the sequence ontology (SO) [8].

VEP also takes a distance flag to specify the upstream and downstream range
from which to identify gene-based annotations. This flag is used to increase the
flanking region of candidate genes associated to each somatic mutation for each
sample. From a technical standpoint, increasing the distance will increase the
size of candidates and simultaneously increase the amount of skew.

The type of Occurrences is:

Bag ({ sample : string, contig : string, start : int,end : int,
reference : string, alternate : string,mutationld : string,
candidates : Bag ({ gene : string, impact : string,
sift : real, poly : real, consequences : Bag (( conseq : string)))))).

The shredded representation of Occurrences consists of a top-level flat bag
Occurrences® of type:

Bag ({ sample : string, contig : string, start : int, end : int,
reference : string, alternate : string,mutationId : string,
candidates : Label)).

and a dictionary tree Occurrences® of tuple type

n

(candidates™ :
Label — Bag(( gene : string, impact : real, sift : real, poly : real, consequences : Label)),
candidates™™ : Bag((
consequences™ : Label — Bag({conseq : string)),

consequences™: Bag(()) )) )

13



The shredded represented of Occurrences is representated as three datasets
in the implementation. The top-level bag is 6GB, the first-level dictionary is
281GB, and the third-level dictionary is 35G.

5.1.2 BF;: Copy Number

Copy number values correspond to the amplification or deamplification of a gene
for each sample, and are also found by comparing against non-cancerous, refer-
ence copy number values. The copy number information is provided per gene.
The copy number information is reported for each physical sample taken from
a patient; this is denoted aliquot. The type of the copy number information is:

Bag ({aliquot : string, gene : string, cnum : int)).

5.1.3 BN;: Protein-protein Interactions

Protein-protein interaction networks describe the relationship between proteins
in a network. This Network input is derived from the STRING [19] database.
The network is represented with a top-level node tuple and a nested bag of
edges, where each edge tuple contains an edge protein and a set of node-edge
relationship measurements. The type is:

Bag ((nodeProtein : string, edges : Bag ({ edgeProtein : string, distance : int)))).

5.1.4 BF;: Gene Expression

Gene expression data is based on RNA sequencing data. Expression measure-
ments are derived by counting the number of transcripts in an aliquot and
comparing it to a reference count. The expression measurement is represented
as Fragments Per Kilobase of transcript per Million mapped read (FPKM),
which is a normalized count. The type is:

Bag ({aliquot : string, gene : string, fpkm : real)).

14



5.1.5 Mapping Files

Sample Metadata. The Samples input maps samples to their aliquots; for
the sake of this analysis sample maps to a patient and aliquot associates each
biological sample taken from the patient. The type is:

Bag ({ sample : string, aliquot : string)).

BF3: Sequence Ontology. The SOImpact input is a table derived from
the sequence ontology [8] that maps a qualitative consequence to a quantitative
consequence score (conseq). This is a continuous measurement from 0 to 1,
with larger values representing more detrimental consequences. The type is:

Bag ({ conseq : string, value : real)).

Biomart Gene Map. The Biomart input is exported from [17]. It is a
map from gene identifiers to protein identifiers. This map is required to associate
genes from Occurrences and CopyNumber to proteins that make up Network.
The type is:

Bag ({ gene : string, protein : string)).

These inputs described in this section are used in the queries described in
the next section.

5.2 E2E: Pipeline Queries

The queries of the cancer driver gene analysis are an adaptation of the methods
from [21]. They work in pipeline fashion to integrate annotated somatic muta-
tion information (Occurrences), copy number variation (CopyNumber), protein-
protein network (Network), and gene expression (GeneExpression) data. The
idea is to provide an integrated look at the impact cancer has on the underlying
biological system. The analysis takes into account the effects a mutation has
on a gene, the accumulation of genes with respect to both copy number and
expression, and the interaction of genes within the system.

Mutations that play a driving role in cancer often occur at low frequency [11],
making cohort analysis across many samples important in their identification.
Further, cancer is not just the consequence of a single mutation on a single gene.
The interaction between genes in a network, the number of such genes, and
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their expression levels can provide a more thorough look at cancer progression
[3]. The queries below define the analysis. The queries work in pipeline fashion
where the materialized output from one query is used as input to a query later
on in the pipeline.

The pipeline starts with the integration of mutation and copy number vari-
ation to produce a set of hybrid-scores for each sample. The hybrid-scores are
then combined with network interactions to determine effect-scores. The effect-
scores are further combined with gene expression information to determine the
connection scores for each sample. The queries conclude by combining the con-
nection scores across all samples, returning connectivity scores for each gene.
The genes with the highest connectivity scores are considered drivers.

5.2.1 Step;: Hybrid scores

The hybrid score query is the first step in the pipeline. A hybrid-score is calcu-
lated for each candidate gene within a sample by combining mutation impact
and copy number information for that sample, thus providing a score that cor-
responds to the likelihood that the gene is a driver. The output of this step
remains grouped by sample in order to continue integrating sample-specific ge-
nomic datasets that can further contribute to our understanding of driver genes
in cancer in the steps below.

The query below describes the process of creating hybrid scores based on the
Occurrences input. The main difference between this version and the running
example is that Samples provides a map between sample and aliquot used
to join CopyNumber, and the hybrid score is determined for every aliquot. In
addition, conditionals are used to assign qualitative scores based on the human-
interpretable level of impact (impact).

HybridMatrix <
for s in Samples union
{(sample := s.sample, aliquot := s.aliquot, scores :=
sumBy genc® (
for o in Occurrences union
if o.sample == b.sample then
for ¢ in o.transcripts union
for n in CopyNumber union
if s.aliquot == m.aliquot && n.gene == t.gene then
for ¢ in f{.consequences union
for v in SOImpact union

if c.conseq == v.conseq then
{(gene := t.gene, ... score:= ...
let impact :=
if t.impact =="HIGH” then 0.8
else if t.impact =="MODERATE” then 0.5
else if t.impact =="LOW?” then 0.3
else if t.impact =="MODIFIFER’ then 0.15
else 0.01
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in impact x v.value * (n.cnum + 0.01) * sift xpoly)}))}

The output type of this query is:

Bag (( sample : string, aliquot : string, scores : Bag ((gene : string, score : real)))).

The plan produced from the standard pipeline is:
7Tcid7aid,scores
\

FLﬂ7gid,score
cid,oID,aid,aID

P+ impact#*value*(cnum+0.01)
cid,oID,aid,alD,gid,impact,conseq,cnum

eonseq
- ™~
SOImpaCt #consequences
\
aid&&gid
- o
CopyNumber Peiq
/ o~
Samples #transcripts

Occurrences

5.2.2 Step,: By Sample Network

The second step in the pipeline aggregates on an individual's sample network,
based on the hybrid scores. The goal is to associate each gene in the nested
edges collection of Network with the corresponding hybrid scores for a sample.
For each gene in this collection, the product of the hybrid score and the rela-
tionship measurement for that edge (distance) are summed for each node in
the network for each sample.

SampleNetwork <
for h in HybridMatrix union
{(sample := h.sample, aliquot := h.aliquot, nodes :=
sumBy S50z
for n in Network union
for e in n.edges union
for b in Biomart union
if e.edgeProtein == b.protein then

17



{(nodeProtein := n.nodeProtein, score := e.distance x h.hscore)}))}

The output type of this query is:

Bag (( sample : string, aliquot : string,nodes : Bag ({nodeProtein : string, score : real)))).

5.2.3 Step;: Effect scores

The effect scores are calculated using the materialized output of the previous
two steps, denoted SampleNetwork and HybridMatrix. The nested nodes col-
lection of SampleNetwork contains the sum of the combined gene interaction
and hybrid score across the edges collection for each node gene in the top-level
tuples of Network. These values are then combined with the hybrid scores for
each node gene to produce the effect matrix.

EffectMatrix <
for h in HybridMatrix union
{(sample := h.sample, aliquot := h.aliquot, scores :=
for s in SampleNetwork union
if h.sample == s.sample&&h.aliquot == s.aliquot then
for n in s.nodes union
for b in Biomart union
if n.nodeProtein == b.protein then
for y in h.scores union
if y.gene == b.gene then
{(gene := y.gene, score := n.score x h.score)} )}
The output type is:

Bag ({ sample : string, aliquot : string, scores : Bag ((gene : string, score : real)))).

Step,: Connection scores. Connection scores are determined by combin-
ing the effect scores and gene expression data. Gene expression data uses the
normalized count (FPKM) measurement discussed in the input section above.

ConnectMatrix <
for s in EffectMatrix union
{(sample := e.sample, aliquot := e.aliquot, scores :=
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score(

sumBygene

for e in s.scores union
for g in GeneExpression union
if e.gene == g.gene then
{(gene := e.gene, score := e.score x g.fpkm )}))}
The output type is:

Bag (( sample : string, aliquot : string, scores : Bag ((gene : string, score : real)))).

5.2.4 Step;: Gene connectivity

The gene connectivity sums up connection scores for each gene across all sam-
ples. The genes with the highest connection scores are taken to be drivers.

Connectivity <«
score
SumBYgene (
for s in ConnectMatrix union
for ¢ in s.scores union
{(gene := c.gene, score := s.score)})

The output type is:

Bag ((gene : string, score : real)).

5.3 Clinical exploration queries

This section provides an overview of the clinical exploration queries in the
biomedical benchmark. The clinical exploration queries reflect requests a clin-
ician may make from a user-interface; for example, an electronic health record
system that provides access to Occurrences and CopyNumber. The queries con-
tain a combination of restructuring, nested joins, and aggregation. The queries
are nested-to-nested and each query applys an additional operation on the next.
C; groups BNs to return a three-level nested output. C, joins BF5 at level 1
of BNy then groups as in C;. Cj3 proceeds the same way and aggregates the
result of the join prior to grouping.

5.3.1 C;: Group occurrences by sample

This query groups occurrences by sample producing a bag of nested mutation
information for each sample. The query also associates a quantitative value to
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the consequences at the lowest level in the process. The output has four levels
of nesting.

OccurGrouped <
for s in Samples union
{(sample := s.sample, mutations :=
for o in Occurrences union

if s.sample == o.sample then
{(mutationId := omutationId, ..., candidates :=
for ¢ in o.candidates union
{(gene := t.gene, ..., consequences :=

for ¢ in f.consequences union
for ¢ in SOImpact union
if c.conseq == i.conseq then
{(conseq := i.conseq, score := i.value)})} )} )}

5.3.2 C,: Integrate copy number and occurrences, group by sample

This query is similar to above, but joins copy number data on the second level
- per each gene - while constructing mutation groups per sample.

OccurCNVJoin <
for s in Samples union
{(sample := s.sample, mutations :=
for o in Occurrences union
if s.sample == o.sample then
{(mutationId := o.mutationId, ..., candidates :=
for ¢ in o.candidates union
for g in SOImpact union
if g.gene == t.gene then
{(gene := t.gene, cnum:= g.cnum, ..., consequences :=
for ¢ in t{.consequences union
for ¢ in SOImpact union
if c.conseq == i.conseq then
{(conseq := i.conseq, score :=i.value )} )} )} )}

5.3.3 Cj3: Aggregate copy number and occurrences, group by sample

This query groups by sample, joins copy number at the second level, joins quan-
titative consequence values at the third level, and aggregates the product of copy
number and consequence score for each gene.

20



m Standard Unshred m Shred
600

500

400

Running Time (sec)
w
o
o

N
o
o

100
: . 1 L
c2

C1 (small) Cc1 C2 (small) C3 (small) Cc3

Figure 4: Results for the clinical exploration queries.

OccurCNVAgg <
for s in Samples union
{(sample := s.sample, mutations :=
for o in Occurrences union

if s.sample == o.sample then
{(mutationId := o.mutationId, ..., candidates :=
sumBy gene® (

for ¢ in o.candidates union
for g in SOImpact union
if g.gene == {.gene then
for ¢ in t{.consequences union
for ¢ in SOImpact union
if c.conseq == i.conseq then
{(gene := t.gene, score := c.cnum *x i.value)}) )} )}

5.3.4 Performance

The clinical queries extend the benchmark to explore how the performance of
generic queries that do not necessarily fit into a whole analysis pipeline. The
lack of projections and integration with other datasets mimic the behavior of a
query that returns all data to display in a user-interface, for example.

The clinical exploration queries were evaluated using varying sizes of the
Occurrences input; one small collection based on a 168M mutation file (iden-
tified by small) and a large collection of 42G annotated mutations. Note this is
a smaller dataset that is used in the E2E. Figure 4 displays these results. STD
was unable to run to completion for the larger input for all queries, overloading
the available memory on the system each time. The shredded pipeline was able
to complete for all queries exhibiting resilience by distributing the large inner
collections.
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6 Additional and Augmented Experimental Re-
sults

This section contains additional experimental results, along with some of the
experimental plots in the paper augmented with memory information.

All results are for 100GB of non-skewed TPC-H data (scale factor 100, skew
factor 0). We use the flat-to-nested and nested-to-nested queries to compare
the performance of the standard and shredded pipeline using both RDDs and
Datasets. As in the body of the paper, we use STD (standard pipeline), SHRED
(shredded pipeline without unshredding), and UNSHRED (shredded pipeline with
unshredding) to represent runs from our framework. We also explore the ef-
fects of introducing database-style optimizations on the plans of the standard
pipeline. The results highlight advantages of using Datasets over RDDs in code
generation, particularly for nested collections. The results also show how intro-
ducing database-style optimizations can significantly improve performance of
the standard pipeline, generating programs similar to programs that have been
optimized by hand.

6.1 Spark RDDs vs Spark Datasets

The flat-to-nested and nested-to-nested queries are used to compare the per-
formance of STD (standard pipeline), SHRED (shredded pipeline without un-
shredding), and UNSHRED (shredded pipeline with unshredding) using RDDs
and Datasets. Figure 5 displays the results for the flat-to-nested queries with
(5a) and without projections (5b). With projections, the results show that all
strategies exhibit similar performance up to three levels of nesting. The strate-
gies diverge at four levels of nesting where UNSHRED and STD with RDDs have
a spike in total run time. The results without projections follow a similar trend,
with strategies diverging earlier at lower levels of nesting. Without projections,
UNSHRED with RDDs shows increasingly worse performance starting at two
levels of nesting. SHRED with RDDs and SHRED with Datasets have similar
performance.

As stated in Section 4.1, the plan produced for unshredding in the shred-
ded pipeline and the plan for the standard pipeline are identical; thus, the
difference tin performance is attributed to code generation for the unshredding
procedure. Both methods use a series of cogroups to build up a nested set; how-
ever, unshredding requires additional map operations and intermediate object
creation that are required for reconstructing nested objects from dictionaries.
Case classes that lack binary encoders require a significant amount of time and
space to create and store, which is a cost that only increases with the levels of
nesting. UNSHRED with RDDs grows exponentially as the number of nesting
increases, bringing along the previous level with each level of nesting. This is
also a problem for STD , which sees worse performance with increasing levels of
nesting but grows at a slower rate due to less object creation.

To consider what this means from a code generation perspective, compare
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the project operator of Figure 2 to the project operator in Figure 3. The RDD
APT maps over a relation and creates a new case class (R), whereas the Dataset
API avoids this map and uses a select operator that accepts a series of attribute
names. By explicitly stating the attributes, the Dataset API has delayed an
explicit map operation allowing for further performance benefits from the Spark
optimizer. Further, when the time comes to construct R objects, the Dataset
APT will leverage the binary format and incur a much smaller memory footprint.

Figure 6 further highlights the benefits of Datasets with nested-to-nested
queries. Both with and without projections, the difference between SHRED
with RDDs and SHRED with Datasets shows a 2x performance improvement
of the explicit statement of attributes within the Dataset API, and STD has
decreased performance with RDDs. While the unnest operators used in the
code generators both use flat-map operations, the Dataset API maintains a low-
memory footprint for the newly created objects (.as[R] in the code generator).

These results show that code generation with Datasets has minimized over-
head in object creation and gains further improvements from passing meta-
information to the Spark optimizer. Beyond the application to Spark, these
results should be useful for further implementations of automated nested query
processing on distributed systems.
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Figure 5: Performance comparison of RDDs and Datasets for the flat-to-nested
benchmarked queries, including additional competitor DIQL that uses an RDD
implementation.
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Figure 6: Performance comparison of RDDs verse Datasets for the nested-to-
nested benchmarked queries.



6.2 Experiments Comparing With Additional Competi-
tors

We used the TPC-H benchmark to compare to a wide array of external com-
petitors: an implementation via encoding in SparkSQL [2]; Citus, a distributed
version of Postgres [5]; MongoDB [16], and the recently-developed nested rela-
tional engine DIQL [9]. SparkSQL outperformed the other competitors, so those
results were included in the body of the paper; this section shows the extended
results, including all competitors, for the flat-to-nested, nested-to-nested, and
nested-to-flat queries. The source code for each of the queries is available in the
github.

Evaluation strategies and competitors. We explored several potential com-
petitors for use in the comparison. The following competitors were able to per-
form at least one of the TPC-H benchmark queries, and thus are represented in
the subsequent results.

e SparkSQL:
The SparkSQL queries were manually written based on two restrictions.
First, SparkSQL does not support explode (i.e., UNNEST) operations in
the SELECT clause, requiring the operator to be kept with the source re-
lation which forces flattening for queries that take nested input. Second,
an (outer) join cannot follow an explode statement; this means the query
must be written in the following form:

FROM (
SELECT
FROM Q
LATERAL VIEW explode(Q.A) AS B
-- cannot have here another join
) t1
LEFT OUTER JOIN Parts P

e DIQL:
The syntax of DIQL fully supports all the queries in the TPC-H bench-
mark; however, this is an experimental system and we uncovered bugs
during this process. With this in mind, we provide the results for the flat-
to-nested queries only. The DIQL Spark API has slightly different system
requirements and we were only able to compile and run the queries with
Spark 2.4.3 and Scala 2.11.

e Postgres+Citus:
We use a distributed version of Postgres (Citus) as the representative
relational database engine. We use a coordinator Postgres instance with
five workers, exactly like the Spark. We cached inputs and parallelized
processes as much as possible with the following:
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shared_buffers = 80GB
effective_cache_size = 200GB
work_mem = 64MB

max_worker_processes = 20
max_parallel_workers_per_gather = 20
max_parallel_workers = 20

However, the results using default values had better performance. The
Citus queries were manually written, using both arrays and JSON with
and without caching inputs. We report the runtimes of the array based
queries, without caching inputs, and default worker configurations since
this continuously outperformed the others.

All Citus queries are based on several caveats. First, Citus does not
support nested subqueries in the target of a SELECT, failing with could
not run distributed query with subquery outside the FROM, WHERE and
HAVING clauses. Second, queries can be rewritten using GROUP BY
and ARRAY_AGG, but joins between relations partitioned on different
columns - known as complex joins in Citus terminology - are not sup-
ported; this fails with complex joins are only supported when all distributed
tables are co-located and joined on their distribution columns. Outer joins
can be done in a binary fashion with one table being a common table
expression (CTE). For instance, the following query where t1 and t2 are
partitioned on the join key but not on the join key for t3:

SELECT
FROM (
OUTER JOIN t1 and t2
)
OUTER JOIN t3

The result of the subquery (t1 join t2) will be collected entirely at the
master and then partitioned to workers according to the next join key.
This is obviously inefficient and has restrictions logged in Citus as: DE-
TAIL: Citus restricts the size of intermediate results of complex subqueries
and CTEs to avoid accidentally pulling large result sets into once place.
Third, left outer joins between tables partitioned on different keys are not
yet supported (https://github.com/citusdata/citus/issues/2321). Finally,
to avoid pulling data back to master and enable outer joins between rela-
tions partitioned on different keys, we manually created execution plans
where at eachstep we (outer) join two relations partitioned on the same
key and write the result back into a distributed materialized view parti-
tioned on the next join key in sequence. That means we had to materialize
the entire flattened nested object to get it repartitioned by partkey be-
fore joining with Part. Each nested-to-flat requires 2 queries, while each
nested-to-nested has one extra query for the final regrouping.

MongoDB:
We use MongoDB with one master and five workers, as in the Spark
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and Citus setup. The queries were hand-written based on the following
restrictions. Only one collection can be sharded when performing lookups
(joins), the inner one must be local. The only join strategy is to iterate
(in parallel) over the outer collection and do lookups on the inner col-
lection, which is located on one machine; thus, this is a bottleneck. We
find that MongoDB has good with selective filters over a single collection,
not designed for queries over multiple collections or even single-collection
queries that return many documents. Nested collections formed using the
$push accumulator are currently capped at 100MB; pipelines using more
than 100MB will fail.

Additional competitors explored. The following systems were also ex-
plored, but were unable to support the queries of the benchmark.

o Rumble:

Rumble transforms JSONiq to Spark and supports local and distributed
execution. We discovered problems running even toy examples doing
data denormalization. Initially, outer joins were not supported: https:
//github.com/RumbleDB/rumble/issues/760. We reported this and it
was fixed, but now outer joins with distributed collections are transformed
into Cartesian products. In general, the Rumble JSONiq language is
not providing several of the operations available in Spark (e.g., caching,
schema handling) are not available through their JSONiq language.

e Zorba:
Zorba (JSONiq) has no support for distributed execution, and has not
been maintained in the past 4 years [22].

e MonetDB:
MonetDB provides no support for array type and array operations. The
system does support JSON operations over strings, but there is no easy
way to transform tables to JSON objects, and manually creating JSON
strings throws errors [15].

e Cockroach:
CockroachDB does not support nested arrays or ordering by arrays [6].

e VoltDB:

VoltDB does not have support for arrays. There is support for JSON, but
is is up to the application to perform the conversion from an in-memory
structure to the textual representation. In addition, there is a size limit
for JSON values. The VARCHAR columns used to store JSON values are
limited to one megabyte (1048576 bytes). JSON support allows for aug-
mentation of the existing relational model with VoltDB; however, it is not
intended or appropriate as a replacement for pure blob-oriented document
stores.
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o YugabyteDB:
YugabyteDB seemed like a good candidate as it supports distributed ex-
ecution and much of SQL, but the performance was too poor to explore
further. For example, the following query took four minutes with 18760
orders tuples and 2500 user tuples:

SELECT users.id,
(SELECT ARRAY_AGG (orders.id)
FROM orders
WHERE orders.user_id=users.id)
FROM users

Flat-to-nested for non-skewed data. Figure 7a displays the results for
MongoDB, Postgres Citus, DIQL, SparkSQL, STD , SHRED, and UNSHRED for
the narrow flat-to-nested queries of the TPC-H benchmark. Given the perfor-
mance for all systems is worse for wide tuples, we did not explore the perfor-
mance of MongoDB and Citus for the wide variants. Figure 7b displays the
results for DIQL, SparkSQL, STD , SHRED, and UNSHRED for the wide flat-to-
nested queries.
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Figure 7: Performance comparison of flat-to-nested queries including all com-
petitors.
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Figure 8: Performance comparison of narrow nested-to-nested queries including
all competitors.

Nested-to-nested for non-skewed data. Figure 8 displays the results for
MongoDB, Postgres Citus, SparkSQL, STD , SHRED, and UNSHRED for the nar-
row nested-to-nested queries of the TPC-H benchmark. Given the performance
for all systems is worse for wide tuples, we did not explore the performance of
MongoDB and Citus for the wide variants; thus, the wide variants for SparkSQL,
STD , SHRED, and UNSHRED can be found in the main body of the paper.
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Figure 9: Performance comparison of narrow nested-to-flat queries including all
competitors.

Nested-to-flat for non-skewed data. Figure 9 displays the results for
MongoDB, Postgres Citus, SparkSQL, STD , SHRED, and UNSHRED for the
narrow nested-to-flat queries of the TPC-H benchmark. As with the previous
two query categories, we provide only the narrow variants for MongoDB and
Postgres Citus. The wide variants for SparkSQL, STD , SHRED, and UNSHRED
can be found in the main body of the paper. Due to the poor performance of
these systems, the nested inputs for MongoDB and Postgres Citus were prepro-
cessed with projections pushed; thus, MongoDB and Postgres Citus take the
materialized narrow flat-to-nested query as input. The other systems take the
materialzied wide flat-to-nested query as input.
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Figure 10: Performance comparison of narrow TPC-H benchmark queries with
total shuffle memory (GB).

6.3 Total shuffle for non-skewed TPC-H benchmark

Figure 10 and Figure 11 provides annotated results for Figure 7 in Section 7
of paper, which includes the total shuffled memory (GB) for each run. If a job
crashes at a particular nesting level, we do not report any further total shuffle
memory. As above, MongoDB and Postgres Citus take the materialized narrow
flat-to-nested query as input; whereas, the other methods take the materialized
wide flat-to-nested query as input.
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Figure 11: Performance comparison of wide TPC-H benchmark queries with
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6.4 Standard pipeline optimizations

This experiment highlights how the framework can leverage database-style op-
timizations to automatically generate programs that are comparable to hand-
optimized programs. Plans are generated using the standard pipeline with in-
creasing amounts of optimizations applied to both the flat-to-nested and nested-
to-nested queries. Figure 12 shows the results of this experiment. STD with no
optimizations is the untouched plan that comes out of the unnesting algorithm.
STD with pushed projections is the plan from the unnesting algorithm with
projections pushed. STD is the standard pipeline used in all experiments with
projections pushed, nests pushed past joins, and merged into cogroups where
relevant. STD is comparable to a highly optimized, manually defined program
over nested collections.

The results show that even simple optimizations like pushing projections can
provide major performance benefits for flattening methods. For example, Figure
12a shows that projections have not only increased performance of the standard
pipeline, but have allowed the strategy to survive to deeper levels of nesting.
This is expected since the experiments in the previous sections have shown that
the performance of STD is heavily impacted by the presence of projections (ie.
the number of attributes an output tuple). For nested-to-nested queries, STD
is the only strategy to survive past one level of nesting. These results show that
database-style optimizations are not only beneficial to improve performance, but
are necessary when using flattening methods even with shallow-nested objects.
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Figure 12: Performance comparison of benchmarked queries for increasing op-
timization levels of the standard pipeline.
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Figure 13: Amount of shuffled data from COP prior to joining with Part in level
2, narrow, nested-to-nested TPC-H query for skew-aware and skew-unaware
pipelines, as well as SparkSQL.

6.5 Additional Skew-handling results

COP shuffle in skew-handling results. Figure 13 shows the amount of data
shuffled from COP prior to the nested join with Part for the nested-to-nested
TPC-H query used in the skew-handling results in the paper. The results high-
light how the skew-aware shredded pipeline leads to less than a gigabyte of
shuffling for moderate and high levels of skew. There are no COP shuffle re-
sults for the standard pipeline due to the application failing during flattening.
SparkSQL survives flattening for high levels of skew, but fails while performing
the join with Part. The shuffling of the standard pipeline shows that at lower
levels of skew the local aggregation is beneficial. At higher levels of skew the
local aggregation reduces the data in the skew-unaware pipeline to about 4.5G;
however, the skew-aware pipeline has reduced this to only megabytes of data
leading to 74x less shuffle than the skew-unaware pipeline.
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Figure 14: Performance comparison of skew-aware and non-skew aware standard
and shredded pipeline without local aggregation.

Without local aggregation. Figure 14 shows the runtimes for the skew-
aware and skew-unaware standard and shredded pipeline when local aggregation
is disabled.
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Figure 15: Skew-handling overhead for skew-unaware (agnostic) and skew-aware
(skew) variants of the standard and shredded pipeline.

Overhead of Skew-Handling.

Figure 15 shows the overhead of skew-handling for non-skewed data. Ag-
nostic refers to the skew-unaware pipeline, and skew refers to the skew-aware
pipeline. SHREDggw exhibits the largest overhead for heavy key collection. Both
FLATgpw and SHREDggpw calculate heavy keys for Lineitem <t Part, which
takes about 12s. The main overhead of SHREDgkgw is the heavy key calculation
within the final casting of the lowest-level dictionary with BagToDict. Unshred-
ding does no heavy key calculations, thus there is no additional overhead for

+U
SHRED -
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